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Chapter 3 
Time History Numerical Solution Techniques 
 
3-1. Introduction 
 

a. Numerical solutions of equations of motion for structures are divided into two methods: direct 
integration and mode superposition. In direct integration the equations of motion are integrated directly using 
a numerical step-by-step procedure, without transforming the equations into a different form. In mode 
superposition method the equations of motion are first transformed into a more effective form (modal forms) 
before they are solved using either a step-by-step integration in the time domain or by application of the 
frequency-domain procedures. Only a brief description of these procedures as applied to the linear time-
history analysis are presented in this chapter. A more detailed description of the methods can be found in 
Ebeling, Green, and French (1997) and other cited references. The chapter is divided into two sections: 
Section I and Section II. Section I begins with a general description of the equations of motion followed by 
presentation of several time-domain solution procedures commonly used in the earthquake engineering. 
Section II is devoted to solution of the equations of motion in the frequency domain.  It begins with a preview 
and conversion of the seismic input into the frequency domain, followed by introduction of the frequency 
response functions, and finally computation of the structural response first in the frequency domain and then 
converting back to the time domain.   
 
Section I 
Time Domain Solutions 
 
3-2. Equations of Motion  

a. The equations of motion for a hydraulic structure are formulated from the equilibrium of the effective 
forces associated with each of its degrees of freedom (Clough and Penzien, 1993). In a matrix form these 
equations may be expressed by 

 ( ) ( ) ( ) ( )tttt pukucum =++ &&&   (3-1) 

where m, c, and k are the mass, damping, and stiffness matrices, respectively; ( ) ( ) ( )ttt uu &&& and,,u  are 
respectively nodal displacement, velocity, and acceleration vectors; and p(t) is the effective load vector. For 
hydraulic structures the coefficient matrices and the effective load vector also include contributions from 
interaction with the water and the foundation rock. However, depending on the type of finite-element 
formulation used, the interaction effects are treated as described below.  
 

b. In standard finite-element formulation (2-11) with massless foundation and incompressible water the 
mass matrix m contains both the structure mass and the added mass of water. The matrix k is the combined 
stiffness for the structure and the foundation. The effective load vector p(t)  resulting from the earthquake 
ground shaking, includes inertia loads due to the mass of the structure and  of the water.  

 
c. In substructuring finite-element formulation (2-10), the interaction with water is generally represented 

by hydrodynamic forces that are included as part of the effective load vector. The damping and stiffness are 
represented in the form of dynamic stiffness or impedance matrix that also includes interacting forces with the 
foundation. Since foundation impedance and hydrodynamic forces are frequency dependent, the 
substructuring formulation is usually developed in the frequency domain and solved as described in Section II 
of this chapter.  
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3-3. Direct Integration  

a. General. In direct integration the equations of motion in (3-1) are directly integrated using a step-by-
step numerical procedure without prior transformation of the equations to a different form. The step-by-step 
integration procedures provide an approximate solution at n discrete time intervals 0, ∆t, 2∆t, 3∆t, …, t, t+∆t, 
…T, where T is duration of the input motion or loading and ∆t =T/n. Many numerical integration procedures 
have been developed. However, only a very brief summary of the most common methods are presented to 
show how they are applied in seismic analysis of hydraulic structures. Direct integration methods are 
generally classified as either explicit or implicit. In general, linear time-history analyses of hydraulic 
structures described in Chapter 2 are conducted using implicit methods. However, explicit methods are briefly 
discussed here because they are included in some commercial computer programs and the reader may use 
them in solution of certain problems.  
 

b. Explicit Methods. The basic concept common to most explicit methods is to write the equations of 
motion for the beginning of the time step, approximate the initial velocity and acceleration terms by finite-
difference expressions, and then solve for response at the end of time step. This way the response values 
calculated in each step depend only on quantities obtained in the preceding step. Therefore, the numerical 
process proceeds directly from one step to next. Explicit methods are very convenient, but they are only 
conditionally stable and will “blow up” if time step is not sufficiently small.  
 

(1) The central Difference Method. The central difference method is a very simple explicit method that 
uses the following finite-difference expressions for approximation of the initial velocity and acceleration 
terms (Clough and Penzien 1993, Bathe and Wilson 1976).  
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The displacement solution for time step t+∆t (i.e. ut+∆t) is obtained by considering the equations of motion (i.e. 
(3-1)) at time step t  

 tttt pkuucum =++ &&&  (3-4) 

Substituting (3-2) and (3-3) into (3-4), leads to 
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This equation shows that the stiffness matrix does not appear in the coefficient of ut+∆t, and thus factorization 
of the (effective) stiffness matrix will not be required. If mass and damping matrices are diagonal, even the 
matrices need not be assembled. In that case the solution is obtained at the element level which allows solving 
very large structural systems without substantial computer resources. These advantages make the central 
difference method convenient and efficient. However, the method is only conditionally stable and its stability 
depends on the choice of time step ∆t. To obtain a stable solution, ∆t must be <Tn /π , where Tn is the shortest 
natural period of the structural system. If the central difference method is used with a ∆t > Tn /π the solution 
will increase exponentially. This may not be a limiting factor for a SDOF system, because more than π or 3 
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steps are needed to adequately define one vibration cycle. However, the size of time step would be an issue 
for the MDOF systems where very short-period modes of vibration (compared with time step of input 
loading) are essential to the dynamic response of the system. In these situations extremely small time step 
would make the explicit methods undesirable.  
 

c. Implicit Methods. In an implicit method the expressions for new values at t+∆t use equilibrium 
equations at t+∆t, and thus include one or more values pertaining to that same step. Examples of implicit 
integration methods are presented below.  

(1) Newmark-β Method. The Newmark-β method is a general step-by-step procedure with the 
following integration equations for the displacement and velocity at time step t+∆t (Clough and Penzien 
1993, Bathe and Wilson 1976). 
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 ( )[ ]tttttt t ∆+∆+ +−∆+= uuuu &&&&&& γγ1  (3-7) 
 
where β and γ are weighting factors and can be chosen to obtain optimum stability and accuracy.  
 

(a) If β = ¼ and γ =1/2 the Newmark-β method is unconditionally stable (i.e. regardless of the size of the 
time step). In this case the acceleration within the time step ∆t is constant and is usually referred to as the 
Newmark’s constant-average acceleration scheme.  

 
(b) If β = 1/6 and γ =1/2 the Newmark-β method is identical to the linear acceleration method, in which 

the acceleration varies linearly within each time step. The linear acceleration method, however, is only 
conditionally stable. The linear acceleration method will be unstable unless ∆t/Tn ≤ √3/π = 0.55. This 
restriction has no effect in the analysis of SDOF systems because a shorter time step than ∆t/Tn= 0.55 is 
needed for satisfactory representation of the dynamic response and input, but may require extremely short 
time step for analysis of MDOF systems having short periods of vibration. 
 

(c) In general assuming a linear acceleration within each time step gives a better approximation of the 
dynamic response and provides more accurate results than the constant acceleration method.  
 

(2) Wilson θ Method. For a general type of structure the period of the highest mode is related to the 
properties of the individual elements. An element with relatively small mass results in a very short period of 
vibration, with the effect of requiring an extremely short time step of integration, as discussed above. 
Although the unconditionally-stable constant acceleration method can be used in this situation, for accuracy 
reasons an unconditionally-stable linear acceleration method such as the Wilson θ-method (Clough and 
Penzien 1993, Bathe and Wilson 1976) is more desirable. The Wilson θ-method is based on the assumption 
that the acceleration varies linearly over an extended computational interval τ =θ ∆t, where θ ≥1. For θ =1, 
the method reverts to the standard linear acceleration method, but for θ > 1.37 it becomes unconditionally 
stable. However, the Wilson θ−method tends to damp out the higher modes and could produce large errors 
when contributions of higher modes are significant. Therefore, the use of this method is no longer 
recommended. Instead the Hilbert, Hughes and Taylor α method, described next, is now being implemented 
in many computer programs in recent years.  
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 (3) The Hilbert, Hughes and Taylor α Method. The HHT-α method (Hughes 1997) is a generalization of 
the Newmark-β method and reduces to the Newmark-β method for α = 0. The finite-difference equations for 
the HHT-α method are identical to those of the Newmark-β method (i.e. (3-6) and (3-7)). The equations of 
motion are modified, however, using a parameter α. 
 
 ( ) ( ) ( ) ttttttttttt ffkukuucucum αααααα −+=−++−++ ∆+∆+∆+∆+ 111 &&&&  (3-8) 
 
With α = 0 the HHT-α method reduces to the constant acceleration method. If -1/3 ≤ α ≤ 0, β = (1-α2)/4, and 
γ =1/2-α, the HHT-α method is second-order accurate and unconditionally stable. The HHT-α method is 
useful in structural dynamics simulations incorporating many degrees of freedom, and in which it is desirable 
to numerically attenuate (or dampen-out) the response at high frequencies. Decreasing α (below zero) 
decreases the response at frequencies above 1/(2∆t), provided that β and γ are defined as above. 
 
3-4. Mode Superposition 

a. The number of operations in the direct integration method is proportional to the number of time steps 
used. In general the use of direct integration may be considered effective when the response is required only 
for a relatively short duration. However, if the integration must be carried out for many time steps, it may be 
more effective to transform the equations of motion into a form for which the step-by-step integration is less 
costly. For this purpose the equations of motion for linear analysis are usually transformed into the 
eigenvectors or normal-coordinate system. Applying the normal-coordinate transformation in accordance with 
Clough and Penzien (1993) to Equation (3-1) leads to the following decoupled equation of motion for 
individual modes 
 
 ( ) ( ) ( ) ( )tPtYKtYCtYM nnnnnn =++ &&&  (3-9) 
 
where the modal  coordinate mass, damping, stiffness, and load are defined as follows: 
 
  (3-10a) n
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The modal Equation (3-9) may also be expressed in the following form 
 

 ( ) ( ) ( ) ( )
n

n
nnnnnn M

tPtYtYtY =++ 22 ωωξ &&&  (3-11) 

 
where nξ is the modal damping ratio, and nω is the undamped natural frequency. Now the time integration 
can be carried out individually for each decoupled modal equation (3-11). This can be accomplished 
using any of the above integration schemes or by numerical evaluation of the Duhamel integral (Clough 
and Penzien, 1993) 
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where 21 nnDn ξωω −= is the damped natural frequency. Having obtained the response of each mode Yn 

(t) from Equation (3-12), the total displacement of the structure in the geometric coordinates can be 
computed using 
 ( ) ( ) ( ) ( )tYtYtYt NNφφφ +++= ...2211u  (3-13) 

b. In summary, the response analysis by mode superposition requires: 1) the solution of the eigenvalues 
and eigenvectors for transformation of the problem to the modal coordinates, 2) solution of the decoupled 
modal equilibrium equations (3-11) by the Duhamel integral or other integration schemes, and 3) 
superposition of the modal responses as expressed in (3-13) to obtain the total response of the structure.  
 

c. In the linear time-history analysis the choice between the direct method and mode superposition is 
decided by effectiveness of the methods and whether a few modes of vibration can provide accurate results or 
not. The solutions obtained using either method are identical with respect to errors inherit in the time 
integration schemes and round-off errors associated with computer analysis. 
 
3.5 Stability and Accuracy Considerations 

a. The aim of numerical integration of the equations of motion is to obtain stable and accurate 
approximation of the dynamic response with minimal computational effort. An integration method is 
unconditionally stable if solution for any initial conditions will not grow without bound for any time step ∆t. 
The method is said to be only conditionally stable if the aforementioned stability condition holds when ∆t/T is 
smaller than a critical value. On this basis, it is clear that if a conditionally stable method such as the 
Newmark’s linear acceleration method is employed, the time step ∆t should be less than the value specified in 
3-3c(1)(b). While an unconditionally stable method such as the Newmark’s constant acceleration has no 
restriction on the size of the time step for stability consideration, the time step should still be small enough so 
that the method yields an accurate and effective solution. In general stability and accuracy of any method can 
be improved by reducing the size of the time step.   

 
b. The main factor in selecting a step-by-step method is efficiency, which concerns with the 

computational effort needed to achieve desired level of accuracy. Accuracy alone is not a good criterion for 
method selection. This is because any desired level of accuracy can be achieved by any method if the time 
step is made adequately short. In any case the time step should be short enough to provide adequate definition 
of the loading and the response history. A high frequency load or response cannot be described by long time 
steps.  

 
c. The integration time step should be selected based on the frequency content of the applied load and the 

highest significant frequency (shortest significant period) of vibration of the structure. If the load history is 
relatively simple, the choice of the time step will depend essentially on the shortest significant period of 
vibration. In general, using a time step ∆t ≤ Tp/10 will give reliable results. Here Tp is the lowest period of 
vibration that will contribute significantly to the dynamic response. Considering that an earthquake tends to 
excite mainly a few lower modes of vibration, Tp need not be very short. For example a ∆t = 0.01 can 
adequately define an earthquake acceleration digitized at intervals of 0.01 sec and provide accurate results for 
periods of vibration up to 0.1 sec. Note that even though such an earthquake acceleration contains frequencies 
up to Nyquist frequency f = 1/2∆t = 50 Hz, the significant input energy is usually confined to frequencies less 
than about 10 Hz (0.1 sec).   Thus selecting a short time step than 0.01 sec to account for higher modes may 
not change the response significantly, because the earthquake input energy to excite such higher modes is 
expected to be negligible. If there is any doubt about the accuracy of the results, a second analysis can be 
made with a time step reduced by one-half to ensure that the errors produced by numerical integration are 
acceptable.  
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Section II 
Frequency Domain Solutions 
 
3-6. Preview 
An alternative approach to solving the modal equations of motion (3-9), instead of step-by-step integration in 
the time domain, is to make use of the frequency domain analysis procedures. The frequency domain analysis 
is especially convenient when the equation of motion contains frequency dependent stiffness and damping 
parameters, as in the case of structure-foundation and fluid-structure interaction problems (Clough and 
Penzien 1993). Only an outline of the frequency domain analysis is presented here. A frequency domain 
solution consists of three phases as described below and illustrated in Figure 3-1.   
 

a. The first phase involves conversion of the applied loading from the time domain to the frequency 
domain by means of the Fourier transform procedure. This process replaces the loading amplitude values 
expressed at a sequence of time steps by complex values that express the harmonic load amplitudes at a 
specified sequence of frequencies. These complex values may be interpreted as the frequency-domain 
expression of the loading. 

 
b. In the second phase the structure responses for a specified sequence of given frequencies are 

characterized by the complex frequency response functions, which express the harmonic response amplitudes 
of the structure due to unit harmonic loading. In other words, the frequency response function of a system is 
the ratio of response amplitude to input amplitude when the input is a complex exponential or sinusoid. When 
the complex frequency response functions are multiplied by the harmonic input amplitudes obtained in Step 1, 
the results give the frequency-domain expression of the structure response for the specified loading. 
 

c. In the final phase of the analysis, the frequency domain response obtained in Step 2 is converted back 
to the time domain by means of the inverse Fourier transform procedure. Once the time-domain structure 
response of interest, usually displacements, have been determined in this manner, other response quantities 
such as stresses and section forces and moments are evaluated using the standard relationships between 
displacements and these quantities. 
 
 
3-7. Transfer of Acceleration Time-History to the Frequency Domain 
 

a. The first step in the frequency-domain response analysis is an understanding that an acceleration time-
history can be represented by Fourier series using the discrete Fourier transform.  Consider for 

example an  digitized at a time-step ∆t = 0.01 sec with a total duration t

)(txground&&

xground&& )(t p = 40.96 sec.  The total 

number of points N, equally spaced in time, is 4096 (N = tp/∆t).  The trigonometric form of the Fourier series 
representation of the acceleration time-history is given by: 
 

  (3-14) )(sin)(cos)(
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where a0, an, and bn are Fourier coefficients.  All Fourier coefficients a0, an , and bn are constants for a given 
time-history.  Note that the Fourier series is simply a summation of simple harmonic sine and cosine 
functions.  The general trigonometric form of the Fourier series assumes a periodic function of period Tp, 
equal to duration tp, and ωn = 2πn/Tp.  These circular frequencies ωn are not arbitrary but equally spaced at a 
circular frequency increment ∆ω = 2π/Tp (=2π/tp). 
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Figure 3-1. Phases of dynamic response computation in frequency domain and relationships between 
response parameters 
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b. In practice the Fourier series of is frequently expressed in complex exponential form and 
computed using the computerized Fast Fourier Transform (FFT): 

)(txground&&

 

  (3-15) (  t  i   X  Re  =  t x ss

N/2

0 = s
ground ωexp)( &&&& ∑ )

 
where Re designates the real component of the complex series and 
 
 complex Fourier amplitudes   /NX s )12( +=&&

 
 ωs = the circular frequency of each of (N/2 + 1) harmonic 
 
and 
 1 -  =  i   (3-16) 
 
The circular frequency of each harmonic ωs is given by: 
 

 N/2 ..., 2, 1, 0, =  sfor   
t

 s 2  =  
T

 s 2  =  
pP

s
ππ

ω   (3-17) 

 
Note that for a given time-history each complex Fourier coefficient is a constant value corresponding to 

each circular frequency ω
X s
&&

s and comprises of real and imaginary parts.  Use of the FFT is based on letting N = 
2j (e.g., N = …, 512, 1024, …, 4096, etc.), following the Cooley and Tukey (1965) algorithm for computers. 
 
 
3-8. Frequency Response Functions  
 

a. Definition. The frequency response function of a system is the ratio of response (output) amplitude 
to input amplitude when the input is a complex exponential or sinusoid.  For the input force set to 
 

( ) tiPetp ω=  (3-18) 
 
where F is the input amplitude, the output displacement x will be in the form  
 

( ) tiXetx ω=  (3-19) 
 
In general, X and P may be complex numbers. The complex-valued frequency response function for the 
system is then given by 
 

( )
P
XiH =ω  (3-20) 
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b. Frequency Response Function of a SDOF system. Consider an oscillator with mass m, spring k, and 
damper c, driven by movements of the ground supporting the mass. From the free body diagram the 
equation of motion in the time domain is  
 
 ( )tpymxkxcxm g =−=++ &&&&&  (3-21) 
 
Assuming p (t) = Peiω t, and taking Fourier transform of the above equation, results in the equation of 
motion in the frequency domain 
 
 ( ) ( ) ( )ωωωω PXkicm =++− 2  (3-22) 
 
By definition the complex-valued frequency response function for the SDOF system is given by 
 

 ( ) ( )kicm
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++−
=

ωω
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 (3-23) 
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and  ( ) ( ) ( )ωωω PiHX =  (3-24) 
 

b. Frequency Response Functions for MDOF Systems. The modal equations of motion for a MDOF 
system in the frequency domain is expressed by 
 
 ( ) ( )[ ] ( ) ( )ωωωω iii PY =+− CMK 2  (3-25) 
 
where P(iω) is the Fourier transform of the modal loading vector P(t), which contains modal components 
P1(t), P2(t), …, Pn(t) as defined in 3-10d; Y(iω) is the Fourier transform of the normal coordinate vector Y(t) 
containing Y1(t), Y2(t), …, Yn(t); K and M are the diagonal modal stiffness and mass matrices containing 
elements in accordance with Equations (3-10b) and (3-10a); and C is the normal modal damping having 
elements as given by Equation (3-10c). Note that Equation (3-25) may contain all N normal modal equations 
or only a smaller specified number of lower modes that provide reasonable accuracy. Making use of the 
impedance matrix I(iω) which is equal to the entire bracket matrix, Equation (3-25) can be written in the 
following compact form  
 
 ( ) ( ) ( )ωωω iii PIY -1=  (3-26) 
 
From this equation it is obvious that the complex-frequency-response functions H(iω) is the same as inverse 
of impedance matrix. In practical computation the elements of complex-frequency response functions are 
obtained from inversion of the impedance matrix, but interpolation procedures are used to reduce the solution 
efforts. This way frequency response functions are computed at specified number of frequencies but 
interpolated at the intermediate closely spaced frequency increments.  
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3-9. Computation of Structural Response  
 
After obtaining all frequency response functions Hij(iω) by inversion solution of the impedance matrix and the 
use of interpolation, the response vector Y(iω) is obtained by superposition using 
 

 ( ) ( ) ( )ωωω iii PHY =  (3-27) 

 
where H(iω) is the NxN complex-frequency-response matrix 
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determined for an appropriate range of excitation frequencies. Once the complex frequency response matrix 
has been determined the modal response of structure Y(iω) to any arbitrary loading can be obtained simply by 
Fourier transforming the load by the FFT procedure and multiplying the results by the complex-frequency-
response matrix. Knowing the modal response vector Y(iω), the corresponding modal displacements Y(t) in 
the time domain can be obtained by the inverse FFT procedure, and other response quantities are then easily 
obtained using the standard time-domain procedure described previously.  
 
3-10. Selection of Parameters for Frequency Domain Analysis 
To ensure that frequency domain analysis leads to accurate dynamic response of a structure, the parameters 
that govern the response computation must be selected carefully, as described below. 
 

a. Maximum Excitation Frequency. The maximum excitation frequency selected for the analysis should 
be greater than the frequencies of all significant harmonics in the input ground acceleration record. The 
maximum excitation frequencies should also be large enough to include the range of frequencies over which 
the structure has significant dynamic response. 

 
b. Number of Generalized Coordinates or Vibration Modes. The number of vibration modes required to 

represent earthquake response of a hydraulic structure is much less than the number of degrees of freedom in 
the finite-element model. In general, all the modes that contribute significantly to the dynamic response 
should be included. A final check that enough modes have been considered is to investigate that the maximum 
stresses and section forces do not change if the number of modes is increased.  

 
c. Number of Excitation Frequencies and Time Interval.  As illustrated in Figure 3-1, the parameters used 

in an FFT analysis include T, ∆t, N, fmax, and ∆f.  These are described below. 

(1) T = N*∆t is the duration of response history. In Fourier analysis both the excitation and response are 
periodic; i.e. the values at times … t-2T, t-T, t, t+T, t+2T … are the same. Considering that an acceleration 
record is generally thought to be non-periodic, the input signal should be augmented by several seconds of 
“trailing zeros” to satisfy this condition. It is expected that adequate zeros are added so that the structure 
response present at the end of the input record decays to a relatively small value.   
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(2) ∆t is the time increment at which excitation and response values are defined. 

(3) N = T/∆t  is the number of discrete time steps. The choice of N is made so that N=2j by selecting T as 
demonstrated in Figure 3-1: 

T = Tp + Th 
 
where Tp is the duration of the earthquake signal, and Th is the time required for the structure response to 
decay to decay to negligible value at the end of earthquake signal. 

 
(4) fmax  = 1/2∆t is the maximum frequency that is included in the analysis and is referred to as the 

Nyquist frequency, the largest frequency contain in the input acceleration record. 
 
(5) ∆f = 1/T is the frequency increment in Hz. The frequencies included in the analysis are 0, ∆f, 2 ∆f, 

3 ∆f, …, fmax – a total of N/2+1 frequencies. 
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